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Flapwise Bending Vibration Analysis of Rotating Composite
Cantilever Beams

Seung Hyun Lee, Sang Ha Shin, Hong Hee Yoo·
School of Mechanical Engineering, Hanyang University,

Haengdang-dong 17, Sungdong-gu, Seoul 133-791. Korea

A modeling method for the modal analysis of a rotating composite cantilever beam is

presented in this paper. Linear differential equations of motion are derived using the assumed
mode method. For the modeling, hybrid deformation variables are employed and approximated
to derive the equations of motion. Symmetrical laminated composite beams are considered to
obtain the numerical results. The effects of the dimensionless angular velocity, the hub radius
and the fiber orientation angle on the variations of modal characteristics are investigated.
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1. Introduction

Composite structures, especially rotating com­
posite cantilever beams are often used in engi­
neering applications such as helicopter blades.
In order to design this type of structures, the
modal characteristics of them need to be unders­
tood. The modal characteristics of rotating struc­
tures differ from those of non-rotating structures.
The centrifugal inertia force due to the rotation­
al motion causes the increment of the bending
stiffness of the structure, which naturally results
in the variations of natural frequencies and mode
shapes. Since composite materials possess high
strength and light weight characteristics, they are
generally used for many structure designs. The
structural properties of the composite materials

can be easily controlled by adjusting fiber orien­
tation angles and number of plies. Therefore, the
modal characteristics of rotating composite can­
tilever beams, which are significantly affected by
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the stiffness change induced by rotational motion
and the composite material composition, should
be estimated accurately.

To estimate the modal characteristics of rota­
ting cantilever beams, an analytical model using

energy method was first introduced by Southwell
and Gough (1921). Due to the simplicity of the

model, it has been widely used by engineers who
want to design rotating blades. Schlhansl (1958)
derived the equations of motion of rotating can­
tilever beams and obtained more accurate analy­
tical model to estimate the natural frequencies.
These analytical models were introduced in the
early stage of the rotating beam research. As the

computational technology progressed since early
1970's, a large number of numerical results (see,

for instance, Putter and Manor (1978)) were pub­
lished. Lately, more efficient modeling methods
possessing efficiency and flexibility (see reference
Yoo and Shin (1998) Kuo and Lin (1998)) were

introduced. All these results are, however, in­
volved with rotating beams that are made of
isotropic materials.

Modal characteristics of non-rotating com­
posite structures were investigated in many pre­
vious works (Kapania and Raciti, 1989; Rand,

1991; Nabi and Ganesan, 1994; Kosmatka and
Friedmann, 1989; Chandrashekhara et al., 1990).
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However, only a few works were involved with
rotating structures that are made of composite
materials. The objective of this paper, therefore,
is to present an accurate modeling method that
can estimate the variations of natural frequencies
and mode shapes. The effects of the fiber orienta­
tion angle, the angular velocity and the hub radi­
us of the rotating beam on the variations are
investigated.

r

2. Equations of Motion RiWi f!JbAI-----------~
L

In this paper, the thickness of the beam is
assumed to be uniform and small compared to the
beam length, so that transverse shear and rotary
inertia effects are ignored. Also, the flapwise
bending thickness is assumed to be much smaller
than the chordwise bending thickness (like heli­
copter blades). Thus, the bending displacement
in the chordwise direction is also ignored in the
following formulation. So, the elastic strain ener­
gy of a composite beam can be expressed as
follows:

Fig. 1 Configuration of a rotating cantilever beam

Substituting Eq. (3) into Eq. (I), one obtains

IILr ( os )2 (OS )( 1U3) ( 1U3 )2]U=T lA ll ox +2Bll ox or +Dll or dx(4)

To obtain ordinary differential equations of mo­
tion, deformation variables are approximated
by the Rayleigh-Ritz assumed mode method as
follows:

where Au, Bu, and Du can be obtained by
integrating the material properties of each layer
of the composite beam (as shown in Fig. 2) as
follows:

where Qt are the off-axis stiffnesses of k th layer,
Zk and Zk-l are the distances from the mid-plane
to the top and bottom surface of k th layer, and
N is the total number of layers. Stretching and
bending strains expressed in the deformation vari­
ables s and Us (shown in Fig. 1) are expressed as
follows:

(6)

(5)

l
X( au )2

S=Ul+ 0 ar/ dn

Where 1>lj and 1>3j are spatial mode functions.
Any compact set of admissible functions that
satisfy the geometric boundary conditions of the
beam can be used as the mode functions. Mean­
while Q1j and QSj are generalized coordinates and
fl.l and /l:.l are the number of the generalized coor­
dinates for Q1j and q». respectively.

Since s (instead of Ul) is approximated, expres­
sions involved with ui need to be expressed in
terms of sand U3. For the purpose, the following
approximate geometric relation is employed:

By using the Kane's method, equations of mo­
tion can be obtained from the following equation
given by

(2)

I
h

'
2 b NDu=b Qlf)~dz=-3~Qlf)(z~-zL)

-h/2 k=1

I
h

'
2 b NB«= b Qlf)zdz=-2~ Qlf)(zi - zi-l)

-h/2 k=1

I h ' 2 N
Au= b Qlf)dz= b~ Qlf)(Zk - Zk-l)

-h/2 k=1

l
Lp( a~p) dtjP dx+ au =0 (i=l, ''', fl.) (7)

o aQi dt aqi
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To convert the equation of motion into a di-
X mensionless form, we introduce the dimensionless

variables are defined by

z
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(a) Laminated composite beam geometry and layer
numbering

y
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(b) Fiber angle of the k-th layer of the laminated
composite beam

Fig. 2 Constitution of a laminated composite beam

~(Jp¢Ji¢3jdx)ib+~(JDU¢3.xr¢JAxxdx)q3i

+~.Q2[r(Jp(l-x) ¢J.x¢Ji.xa'X )q3i (I I)

+(J+p(l2_X2)¢J.x¢Ji'x )q3i] = 0 (i=I, ''', J.l3)

!Pi}
where T=..;~ and D is D u when all layers

have 0 degree fiber orientation angle. Substituting

these dimensionless variables into Eq. (II), one

obtains

~(ff!3i1/!Jid~)03i+~(JO!frwey,3Aud~) fk

+~f[I1(JO -~) y,3.e~~~) 8Ji (13)

+(J+0-~2) f!3.eif!3u)8Ji] = 0 (i=I, "', t/:l)

where iiJA is the angular velocity of the rigid hub

attached to a beam.

By using Eqs. (5), (6) and (9)

where J.1.= J.1.1 +/-13. jjP the velocity of the generic

point P, U the strain energy of the beam, p

the mass per unit length of the beam, L the

undeformed length of the beam. When the rigid

hub rotates with a constant angular speed Q, iiJA
and jjP can be expressed as follows;

where

~ Du r. .
where u=D and 6=y. In matrix form, Eq.

(13) can be expressed as follows

Mrl=11

Vr3iVr3jdl;

K.~3=O11

J/rJi.~d3j.~~dl;

K83= 116(1 -I;) Vr3i.~Vr3j.•dl;

I (I 2
+2)0 (I - I; ) Vr3i.•Vr3j.edl;

(8)

If {kj is a harmonic function of t, 8 represents a

column matrix which has {kj as its element:

where j represents a imaginary number, (/) is the

ratio of the flapwise bending natural frequency

to the reference frequency (inverse of T) and e
is a constant column matrix characterizing the

deflection shape for synchronous motion. Using

Using Eqs. (4), (7), (9), (10) and considering

composite beam that has mid-plane symmetry of

cross-section, the flapwise bending vibration of

the rotating composite beam is governed by the

following equation which is not coupled with

bending and stretching direction;

8=eiwr e ( 15)
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Table 1 Material data of the composite beam

Fig. 3 Fiber direction of the eight-layer laminate

Eq. (IS), Eq. (14) can be written as follows

--°:1:::1:30°
----0,=60·
...... 0,=90·

...................
--.----------'"

", -
'to -;

", -
-'0 ...

.... ...

10 20 30 40 50 60 70 80 90

fl,

Fig. 4 Variation of aversus fiber angles

Material 1 Material 2

Properties TJOO/5208
Kevlar Fiber

-Epoxide
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Cu(GPa) 7.17 2.1

V12 0.28 0.34

0.7

0.8

0.5

0.4

" 0.3

0.2

0.1

0.0
0

(17)

(16)

y

ofMfJ=KfJ

M iJ =Mlf

Kij=Kl?+rK83

3. Numerical Results
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where M and K are square matrices. Their ele­

ments and Mij are Ki, defined as follows:

120..--------------------,

Fig. 5 Natural frequency variations versus angular
speed

the results. As shown in the figure, the relative

discrepancy among the three results is significant

only in the lower angular speed range. As the

angular speed increases the relative discrepancy

becomes negligible.

Figure 7 shows the effect of 0 on the lowest

three natural frequencies versus the angular speed.
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Dimensionless angular speed

2

--<1=0
- - - - <1=0.5
..... ,,=2

o
o

In this paper, two composite materials are used

for the composite beams that are composed of 8
layers. The first material is used for 1st, 4th

, Sth,

and 8t h layers, and the second material is used

for 2nd
, 3r d

, 6t h
, and 7t h layers. Fiber orientation

angles lie symmetrically on the mid-plane of the

composite beams. Properties of the material I and
2 are shown in Table I.

Figure 4 shows the variation of 0 as (h in­
creases from 0° to 90° with fixed conditions of

Ch=4So, 84 = 90° (for fh=30°, 60°, and 90°). As

shown in the figure, variable 0 varies in the range

of 0< 0:::;;: I. Also, 0 varies significantly when (h

and fh are lower than 4So.

Figure S shows the variations of the lowest

three natural frequencies versus the angular ve­

locity. o=O.S is used to obtain the results. As

shown in the figure, natural frequencies increase

as the angular speed increases. Also, their increa­

sing rates become larger as the hub radius ratio

increases.

Figure 6 shows the variation of the first natural

frequency versus 0, where 0"=0.1 is used to obtain
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(b) Second natural frequencies

Fig. 6 Natural frequency variations versus the angu­

lar speed for several fiber angle parameters
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Fig. 7 Effect of fiber angle parameter (J on natural

frequency variation versus the angular speed
(I8)

The variable A(i) shown in the graph is defined as
follows:

where w~1x and wMln are i'" natural frequencies
obtained with O'max and O'mln. As shown in the
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figure, J(') decrease fast as the angular speed
increases. Thus, these results are consistent with
the previous results of Fig. 7.

Figure 8 shows the variations of lowest two
mode shapes with the conditions of r=5 and
<1=0.1. The solid lines represent the mode shapes
of 0'=0.1 and the dotted lines represent the
mode shapes of 0'= I. These results show that 0'
affects the mode shapes noticeably if not signi­
ficantly.

4. Conclusion

In this paper, equations of motion for rotating
composite cantilever beams are derived. Since the
beam thickness is much smaller than the width
and the layers have symmetric compositions, the
coupling effects between stretching and bending
motions are ignored and only flapwise bending
motion is considered. Three dimensionless para­
meters are identified from the equations of motion
and their effects on the modal characteristics are
investigated. From numerical results, the follow­
ing conclusions could be obtained. The natural
frequencies increase as the angular speed in­
creases. Furthermore, the increasing rates of the
natural frequencies increase as the hub radius
increases. It is found that the fiber orientation
angle parameter 0' noticeably affects the modal
characteristics of the rotating composite cantilever
beams especially in the lower angular speed
range. However, the effect of 0' on the modal
characteristics decreases rapidly as the angular
speed increases.
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